Fully computable robust a posteriori error bounds for singularly perturbed reaction-diffusion problems
نویسندگان
چکیده
A procedure for the construction of robust, upper bounds for the error in the finite element approximation of singularly perturbed reaction diffusion problems was presented in [2] which entailed the solution of an infinite dimensional local boundary value problem. It is not possible to solve this problem exactly and this fact was recognised in the above work where it was indicated that the limitation would be addressed in a subsequent article. We view the present work as fulfilling that promise and as completing the investigation begun in [2] by removing the obligation to solve a local problem exactly. The resulting new estimator is indeed fully computable and the first to provide fully computable, robust upper bounds in the setting of singularly perturbed problems discretised by the finite element method. Dedicated to Professor Ivo Babuška on the occasion of his 85th birthday.
منابع مشابه
Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems
We propose and study a posteriori error estimates for convection–diffusion–reaction problems with inhomogeneous and anisotropic diffusion approximated by weighted interiorpenalty discontinuous Galerkin methods. Our twofold objective is to derive estimates without undetermined constants and to analyze carefully the robustness of the estimates in singularly perturbed regimes due to dominant conve...
متن کاملMaximum Norm a Posteriori Error Estimation For a Time-dependent Reaction-diffusion Problem
Abstract — A semilinear second-order singularly perturbed parabolic equation in one space dimension is considered. For this equation, we give computable a posteriori error estimates in the maximum norm for a difference scheme that uses Backward-Euler in time and central differencing in space. Sharp L1-norm bounds for the Green’s function of the parabolic operator and its derivatives are derived...
متن کاملMaximum-norm a posteriori error estimates for singularly perturbed elliptic reaction-diffusion problems
Residual-type a posteriori error estimates in the maximum norm are given for singularly perturbed semilinear reaction-diffusion equations posed in polyhedral domains. Standard finite element approximations are considered. The error constants are independent of the diameters of mesh elements and the small perturbation parameter. In our analysis, we employ sharp bounds on the Green’s function of ...
متن کاملA Note on Constant-Free A Posteriori Error Estimates
In this note we look at constant-free a posteriori error estimates from a different perspective. We show that they can be interpreted as an alternative way of expressing the residual of a finite element approximation and thus fit into the same framework as other a posteriori error estimates such as residual error indicators. Our approach also reveals that, when applied to singularly perturbed r...
متن کاملGreen’s Function Estimates for a Singularly Perturbed Convection-diffusion Problem in Three Dimensions
A linear singularly perturbed convection-diffusion problem with characteristic layers is considered in three dimensions. Sharp bounds for the associated Green’s function and its firstand second-order derivatives are established in the L1 norm by employing the parametrix method. The dependence of these bounds on the small perturbation parameter is shown explicitly. The obtained estimates will be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 119 شماره
صفحات -
تاریخ انتشار 2011